
Rust Learning Repository
Getting started

Name
The project name is "Rust Learning Repository".

Description
The "Rust Learning Repository" is a comprehensive collection of Rust programming examples and tutorials designed to

facilitate the learning process for individuals interested in mastering the Rust programming language.

Key areas covered in the repository include:

1. Theoretical Concepts:

Explanation of fundamental concepts such as Heap, Stack, and the absence of a Garbage Collector in

Rust.

Comparison with analogous concepts in C to highlight differences and similarities.

2. Performance and Memory Management:

Exploration of performance using profiling methods in Rust.

3. Safety Features:

Detailed examination of Rust's safety features, including:

Ownership: Understanding Rust's ownership model and its impact on memory management.

Types: Exploring advanced type system features for ensuring code safety.

Threads: Demonstrating the use of Arc and Mutex for thread safety in concurrent programming

scenarios.

Installation
Rust Installation

To use this project, you need to have Rust installed on your system. If you're using Linux or macOS, you can easily install

Rust via rustup. Follow these steps to install rustup:

curl --proto '=https' --tlsv1.2 https://sh.rustup.rs -sSf | sh

This command downloads a script and starts the installation of the rustup tool, which installs the latest stable version of

Rust. You might be prompted for your password during the installation process. If the installation is successful, you will

see the following message:

Rust is installed now. Great!

Additionally, you will need a linker, which is a program that Rust uses to join its compiled outputs into one file. Most

systems already have a linker installed. However, if you encounter linker errors, you may need to install a C compiler, as

it typically includes a linker.

On macOS, you can get a C compiler by running:

xcode-select --install

Package Installation
Make sure to install any required packages, such as profilers, before running the project.

Usage
Building and Running

To build and run individual files in the project, follow these steps:

1. Clone the repository to your local machine.

2. Navigate to the project directory.

3. Run the following command to build a specific file, replacing <file_name> with the name of the Rust file without

the .rs extension:

cargo build --bin <file_name>

4. After the build completes successfully, you can run the compiled binary using:

cargo run --bin <file_name>

Replace <file_name> with the name of the Rust file you want to build and run. Here are the available files:

ownership

ownership2

types

threads

arc

sendsync

mutex

mutexwithoutarc

arcneedssync

arcneedstypes

For example, to build and run the ownership.rs file, you would use:

cargo build --bin ownership

cargo run --bin ownership

Additionally, you can add new binaries to the cargo.toml file with a specified name for easier referencing. Simply add

the following lines to cargo.toml, replacing <name> with the desired name and <path> with the path to the Rust file:

[[bin]]

name = "<name>"

path = "<path>"

For example:

[[bin]]

name = "custom_binary"

path = "src/custom_file.rs"

Then, you can build and run this custom binary using:

cargo build --bin custom_binary

cargo run --bin custom_binary

Adding Dependencies
If you need to add dependencies to your project, you can do so by editing the Cargo.toml file. Simply add the

dependency under the [dependencies] section, specifying the name and version number. For example:

[dependencies]

crossbeam = "0.8"

C Compilation
GCC Installation

If you're working with C code, you'll need to have the GCC compiler installed on your system. You can install GCC using

your system's package manager. For example, on Ubuntu, you can install GCC with the following command:

sudo apt-get update

sudo apt-get install build-essential

Compiling and Running
Once GCC is installed, you can compile your C code using the gcc command. Here's a basic example:

gcc -o program program.c

Replace program.c with the name of your C source file. After compilation, you can run the compiled executable:

./program

Additional Tools
Htop Installation

If you want to monitor system resources while running your programs, you can install htop on Linux. Here's how to

install it:

sudo apt-get update

sudo apt-get install htop

After installation, you can run htop from the command line to view real-time system statistics.

Profiling
What is profiling?

The profiling is a dynamic program analysis, that measures the space (memory) or time complexity of a program, the

usage of particular instructions, or the frequency and duration of function calls.

The goal of profiling is to detect memory leaks and other inefficiencies in the code. It’s an important step in the

optimization phase of software development where developers aim to enhance the speed, the memory usage and the

overall performance of the software.

Memory profiling with massif in valgrind
Massif, a tool within Valgrind, facilitates memory profiling by scrutinizing memory usage throughout program execution,

capturing snapshots, and providing detailed analysis.

To generate a Massif file, begin by compiling your program:

rustc -O -g salaries.rs

Next, execute the following command :

Valgrind --tool=massif salaries

Finally, to format the Massif file for analysis, utilize the following command :

Ms_print massif.out.(massif file number)

Replace "(massif file number)" with the appropriate file number generated during the execution of your program.

Flame graph
A flame graph provides a visual representation of where a program allocates its memory. It illustrates the combination of

all stack traces leading to active memory allocations at a specific point in time.

In a flame graph, each stack trace is depicted as a column of boxes, with each box representing a function call within that

stack.

The y-axis denotes the stack depth. A special row represents the root, followed by rows representing top-level function

calls that triggered memory allocations, subsequent rows representing functions called by those top-level calls, and so

forth. The function furthest from the root in any vertical slice represents the one directly responsible for memory

allocation, while the boxes leading back to the root outline the full call stack leading to that allocation.

The width of each box corresponds to the amount of memory allocated by the associated function call or its descendants.

Wider boxes indicate more significant memory allocations relative to narrower ones.

How to generate a flame graph
To create a flame graph, you'll need to run a Dockerfile, which sets up an Ubuntu server with Rust installed.

Once inside your container, install Flamegraph by executing the following command:

cargo install flamegraph

Next, compile your file:

rustc -O -g salaries.rs

Now, generate the flame graph :

cargo flamegraph --bin salaries

This will produce an SVG file. To view it, transfer the file from your container to your desktop :

docker cp [container_id]:/app/src/flamegraph.svg [local_path]

Replace '[container_id]' with your container ID, and '[local_path]' with the desired path on your desktop.

Authors and acknowledgment
We would like to express our gratitude to the following individuals for their contributions to this project:

Rafael Cardoso

Zotrim UKA

Térence Laurent

Additionally, for the section on Arc and Mutex in Rust, we drew inspiration from the article written by Piotr Sarnacki on

May 28, 2022, titled "Arc and Mutex in Rust" available at itsallaboutthebit.com/arc-mutex/

(https://itsallaboutthebit.com/arc-mutex/). Their insights and explanations have greatly enriched our understanding of

these topics.

https://itsallaboutthebit.com/arc-mutex/

